اندیس های سگد و همبندی از گراف ناجابجایی در گروه های متناهی
Authors
abstract
فرض کنیم g یک گروه ناآبلی باشد. گراف ناجابجایی $gamma_g$ از g تعریف می شود با مجموعه رئوس g و دو عضو از آن تشکیل یال می دهد اگر باهم جابجا نشوند. در این مقاله ما بعضی از خواص این گراف و ac -گروه n -منظم را معرفی می کنیم. سپس فرمولی برای اندیس سگد گراف ناجابجایی یک گروه متناهی بر حسب اندازه های n و z(g) و g بدست می آوریم. همچنین مشخص می کنیم مقدار اندیس همندی برای هر گروه متناهی برحسب k(g) و اندازه g .
similar resources
گراف ناجابجایی وابسته به گروه های متناهی
فرض کنیم g یک گروه نا آبلی باشد. گراف ناجابجایی وابسته به گروه g که با ?_g نشان داده می شود، یک گراف با مجموعه ی رئوس g(g) است که در آن z(g) مرکز گروه g است. همچنین دو رأس متمایز a و b در آن با هم مجاورند هرگاه ab?ba. زیر مجموعه ی s از مجموعه ی رئوس گراف ?_g، یک مجموعه ی غالب است هرگاه هر رأس v در v(?_g)s با حداقل یک رأس از s مجاور باشد. عدد غالب گراف ?_g، اندازه ی کوچک ترین مجموعه ی غالب گر...
گراف ناجابجایی نسبی یک گروه متناهی
در این پایان نامه ضمن بررسی خواص اساسی گراف ناجابجایی یک تعمیم از آن به صورت زیر ارایه می شود.
n- امین گراف ناجابجایی نسبی گروه های متناهی
در این پایان نامه قصد داریم ضمن بررسی گراف ناجابجایی، تعمیمی از آن به صورت زیر ارایه دهیم. فرض کنید n عدد صحیح مثبت و h زیرگروه غیرآبلی g باشد. ?nh,g را به این صورت به h نسبت می دهیم، که مجموعه رئوس این گراف از g cnh,gانتخاب شوند که cnh,g={x? g:[x,yn]=1 , [xn,y]=1 forall y? h}. همچنین رئوس {x,y} یک یال هستند، هرگاه x و y به h تعلق داشته باشند و xyn?ynx یا xny?yxn....
15 صفحه اولتوان های سرشت های تحویل ناپذیر گروه های متناهی
فرض کنیم x یک سرشت تحویل ناپذیر از یک گروه متناهی ناآبلی G باشد. برای اعداد صحیح نا منفی n و m با شرط m + n > 0، در این مقاله حالتی که تمام موسس های تحویل ناپذیر سرشت xn xm سرشت های خطی G هستند مورد بحث قرار می گیرد. در مقاله ای ریاضی دان معروف به نام مان ثابت کرد که اگر G یک گروه متناهی و x یک سرشت تحویل ناپذیر G باشد و تمام موسس های تحویل ناپزیر x2 خطی باشند، آن گاه (Ǵ≤Z(G و لذا G گروهی پوچ ت...
full textگراف های ناجابجایی گروه های غیرآبلی
مطالعه ساختارهای جبری با استفاده از ویژگی های گراف موضوعی است که در سالهای اخیر مورد توجه ریاضیدانان قرار گرفته است. گراف ناجابجایی اولین بار توسط اردوش در سال 1975معرفی شد. اینگونه که رئوس گراف اعضای گروه منهای اعضای مرکزش اند و دو راس متمایز مجاورند اگر با هم جابجا نشوند.
My Resources
Save resource for easier access later
Journal title:
caspian journal of mathematical sciencesجلد ۴، شماره ۱، صفحات ۴۳-۴۹
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023